CÉLULAS-TRONCO MESENQUIMAIS E SEU POTENCIAL TERAPÊUTICO: UMA BREVE REVISÃO

Autores

  • Patrícia de Carvalho Ribeiro Laboratório de Imunologia e Transplante Experimental, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto-SP, Brasil. Instituto Nanocell, Divinópolis-MG, Brasil.
  • Daniel Mendes-Filho Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba-MG, Brasil. Instituto Nanocell, Divinópolis-MG, Brasil.
  • Niege Silva Mendes Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brasil.
  • Wellington Francisco Rodrigues Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba-MG, Brasil.
  • Camila Botelho Miguel Laboratório Morfofuncional, Centro Universitário de Mineiros-UNIFIMES, Mineiros, GO, Brasil. Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba-MG, Brasil.
  • Ricardo Cambraia Parreira Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brasil. Instituto Nanocell, Divinópolis-MG, Brasil.

Resumo

As células-tronco mesenquimais (MSCs) são um subtipo células-trnco adultas multipotentes, obtidas das mais variadas fontes teciduais e com amplo potencial terapêutico. Caracetrísticas importantes dessas células são sua capacidade de diferenciação, secreção de fatores parácrinos (como moléculas imunomodulatórias e fatores tróficos), habilidade de homing e baixa imunogenicidade. Dessa forma, as MSCs representam uma promissora estratégia de terapia celular, para diversas doenças, como as cardíacas, neurológicas, articulares, entre outras. Tendo em vista a importância do estudo sobre MSCs, este trabalho abrange uma revisão da literatura sobre o tema, e aborda a definição de MSCs, suas características, subtipos, e exemplos de possíveis aplicações terapêuticas.

Referências

ALMALKI, S. G.; AGRAWAL, D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, v. 92, n. 1-2, p. 41-51, 2016.

BAHAT-STROOMZA, M. et al. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease. J Mol Neurosci, v. 39, n.1-2, p. 199-210, 2009.

BUTLER J. et al. Intravenous Allogeneic Mesenchymal Stem Cells for Nonischemic Cardiomyopathy: Safety and Efficacy Results of a Phase II-A Randomized Trial. Circ Res, v. 120, n. 2, p. 332-340, 2017.

CAPLAN, A. L.; CORREA, D. The MSC: an injury drugstore. Cell Stem Cell, v. 9, n. 1, p. 11-15, 2011.

CAPLAN, A.L. Mesenchymal stem cells. J Orthop Res, v.9, n.5, p.641-650, 1991.

CHEN Y. B. et al. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation. Int J Clin Exp Med, v. 8, n. 6, p. 9348-9354, 2015.

CHEN, L. et al. Human Menstrual Blood-Derived Stem Cells Ameliorate Liver Fibrosis in Mice by Targeting Hepatic Stellate Cells via Paracrine Mediators. Stem Cells Transl Med, v. 6, n. 1, p. 272-284, 2017.

DI, G. et al. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci, v. 58, n. 10, p. 4344–4354, 2017.

DÍEZ-TEJEDOR, E. et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis, v. 23, n. 10, p. 2694-2700, 2014.

DING, Z. et al. Galectin-1-induced skeletal muscle cell differentiation of mesenchymal stem cells seeded on an acellular dermal matrix improves injured anal sphincter. Discov Med, v. 21, n. 117, p. 331-340, 2016.

DOMINICI M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, v. 8, n. 4, p. 315-317, 2006.

ERICES A., CONGET P., MINGUELL J. J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, v. 109, p. 235-242, 2000.

FRIEDENSTEIN, A. J.; CHAILAKHJAN, R. K.; LALYKINA, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, v. 3, n. 4, p. 393-403, 1970.

FRIEDENSTEIN, A. J.et al. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, v. 16, n. 3, p. 381-390, 1966.

GLASSBERG M. K. et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I, safety, clinical trial. Chest, pii: S0012-3692(16)62462-5, 2016.

HASS, R. et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal, London, v.9, n.1, p.12, 2011.

HERMANKOVA, B. et al. Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells. Immunobiology, v. 221, n. 2, p. 129-136, 2016.

HORWITZ EM, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, v. 7, n. 5, p. 393-395, 2005.

KARP, J. M.; LENG-TEO, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, v.4, n.3, p.206-216, 2009.

KEATING A. Mesenchymal stromal cells. Curr Opin Hematol, v.13, p. 419-425, 2006.

KIM D. H. et al. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev, v. 24, n. 20, p. 2378-2390, 2015.

LAMO-ESPINOSA, J. M. et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med, v. 14, n. 1, p. 246, 2016.

LEE A. M., LARSON A. M., STRAVITZ R. D. AASLD position paper: the management of acute liver failure: update 2011. Hepatology, 2011.

LEE J. C. et al. Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats. J Pathol Transl Med, v. 49, n. 6, p. 472-480, 2015.

LEIJS, M. J. et al. Effect of Arthritic Synovial Fluids on the Expression of Immunomodulatory Factors by Mesenchymal Stem Cells: An Explorative in vitro Study. Front Immunol, v. 3, p. 231, 2012.

Li L, Zhang Y, Li Y, Yu B, Xu Y, Zhao S, Guan Z. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int, v.21, n.12, p.1181-1189, 2008.

LIANG J. et al. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int J Rheum Dis, 2017.

LU, D.F. et al. Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment. PLoS One, v. 9, n. 4, p. e93222, 2014.

MATCHYNSKI-FRANKS, J. J. et al. Mesenchymal stem cells as treatment for behavioral deficits and neuropathology in the 5xFAD mouse model of Alzheimer's disease. Cell Transplant, v. 25, n. 4, p. 687-703, 2016.

MEIRELLES L. S., CAPLAN A. I., NARDI N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells, v. 26, n. 9, p. 2287-2299, 2008.

MEIRELLES LS, CHAGASTELLES PC, NARDI NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, v. 119, p. 2204-2213, 2006.

MENDES FILHO, Daniel. Diferenciação in vitro de células-tronco mesenquimais de ratos wistar em células neuron-like catecolaminérgicas. 2017. 51 f. Dissertação (Mestrado em Ciências Fisiológicas área 1- Bioquímica, Fisiologia e Farmacologia) – Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.

MENG, X. et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med, v. 5, p. 57, 2007.

MUSINA R. A. et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med, v. 145, n. 4, p. 539-543, 2008.

OLIVEIRA L. F. et al. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension. Stem Cells Int, v, 2015, p. 685383, 2015.

OWEN, M. Marrow stromal stem cells. . J Cell Sci Suppl, v. 10, p. 63-76, 1988.

PARK H. W. et al. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res, v. 93, n. 12, p. 1814-1825, 2015.

PARREIRA, Ricardo Cambraia et al. Células-tronco mesenquimais adultas de diversas origens: uma visão geral multiparamétrica para aplicações clínicas. In: RESENDE, Rodrigo Ribeiro; SOCCOL, Carlos Ricardo. Biotecnologia aplicada à saúde: fundamentos e aplicações- vol.2 (coleção biotecnologia aplicada à saúde, vol.2). São Paulo: Blucher, Cap.18. p. 746-813, 2015.

PETERS E. B. et al. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro. Ann Biomed Eng, v. 43, n. 10, p. 2552-2568, 2015.

PIERDOMENICO L. et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, v. 80, n. 6, p. 836-842, 2005.

PITTENGER, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science, v. 284, n. 5411, p. 143-147, 1999.

PRINDULL G. et al. CFU-F circulating in cord blood. Blut, v. 54, n. 6, p. 351-359, 1987.

RODBELL M. Localization Of Lipoprotein Lipase In Fat Cells Of Rat Adipose Tissue. J Biol Chem, v. 239, p. 753-755, 1964.

ROSSINI A. et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res, v. 89, n. 3, p. 650-660, 2011.

RÜSTER B. et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, v. 108, n. 12, p. 3938-3944, 2006.

SALOMONE F. et al. Efficacy of adipose tissue-mesenchymal stem cell transplantation in rats with acetaminophen liver injury. Stem Cell Res, v. 11, n. 3, p. 1037-1044, 2013.

SATO Y. et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, v.106, p. 756-763, 2005.

SOUSA B. R. et al. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A : the journal of the International Society for Analytical Cytology, v. 85, n. 1, p. 43-77, 2014.

STEINGEN C. et al. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol, v. 44, n. 6, p. 1072-1084, 2008.

TANCHAROEN W. et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem, v. 119, n. 2, p. 113-121, 2016.

TOGEL F. et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol, v. 292, n. 5, p. F1626–35, 2007.

TOYOSHIMA A. et al. Intra-Arterial Transplantation of Allogeneic Mesenchymal Stem Cells Mounts Neuroprotective Effects in a Transient Ischemic Stroke Model in Rats: Analyses of Therapeutic Time Window and Its Mechanisms. PLoS One, v. 10, n. 6, p. e0127302, 2015.

WANG H. S. et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, v. 22, n. 7, p.1330-1337, 2004.

WANG, Z. et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther, v. 8, p. 11, 2017.

WEI, X. et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, v.34, n. 06, p.747-754, 2013.

WENDAN Y. et al. BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation. Stem Cells Int, v. 2016, p. 3196071, 2016.

WU, Q. et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int J Mol Med, 2017.

YAO Y. et al. Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts. PLoS One, v. 10, n. 6, p. e0129164, 2015.

YAZAWA T. et al. Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol Cell Endocrinol, v. 336, p. 127–132, 2011.

YOUSEFI B. et al. Evaluation of motor neuron differentiation potential of human umbilical cord blood- derived mesenchymal stem cells, in vitro. J Chem Neuroanat, v. 81, p. 18-26, 2017.

ZORZI A. R. et al. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage. Int J Mol Sci, v. 16, n. 11, p. 26813-26831, 2015.

Downloads

Publicado

19-12-2017

Como Citar

RIBEIRO, Patrícia de Carvalho; MENDES-FILHO, Daniel; MENDES, Niege Silva; RODRIGUES, Wellington Francisco; MIGUEL, Camila Botelho; PARREIRA, Ricardo Cambraia. CÉLULAS-TRONCO MESENQUIMAIS E SEU POTENCIAL TERAPÊUTICO: UMA BREVE REVISÃO. Revista Interação Interdisciplinar (ISSN: 2526-9550), [S. l.], v. 1, n. 2, p. 182–191, 2017. Disponível em: https://publicacoes.unifimes.edu.br:443/index.php/interacao/article/view/192. Acesso em: 22 jan. 2025.